用户手册

NE3281 SNTP 模块用户手册

2008年12月

www.Link-com.com

关于本文档

读者

本文档详细描述 Link-com 产品 SNTP 模块的结构和功能,适合使用 SNTP 模块进行产品开发人员。

保留权力

文档所有权归Link-com所有,Link-com保留修改文档的权力。Link-com可以在没有通知的情况下随时更改说明规范和产品描述。在订购您的产品之前,请联系您当地的Link-com销售办公室或分销商来获得最新的说明规范。

文档约定

符号	约定
	警告信息,违反警告提示的设计会导致产品运行不可靠。
1	提示信息,描述与用户手册无关的额外信息。
黑体	专属名词,描述产品的名词。

文档版本历史

日期	版本	说明
2008-12-25	V1.0	创建用户手册
2009-05-22	V1. 1	・修改 9, 18, 20, 22 管脚定义,由于 SNTP 状态指示。・添加 SNTP 模块使用注意事项・修正网络指示管脚说明
2010-06-21	V1.2	• 22 脚 Sync_flag 描述有误,应为低电平表示同步。

目 录

1、	简介	5
	产品简介	5
	产品特点	5
	应用领域	
2、	系统结构	
	SNTP系统结构	
3、	管脚定义	7
	管脚引线	7
	管脚描述	7
4、	功能描述	
	4.1 硬件接口描述	10
	4.1.1 网络接口	10
	4.1.2 串行接口	10
	4.1.3 默认参数	11
	4.1.4 秒脉冲输入引脚(SPulse)	11
	4.1.5、秒脉冲状态引脚(SPulse_flag)	11
	4.1.6、时间数据状态引脚(Pack_flag)	11
	4.1.7、同步状态引脚(Sync_flag)	11
	4.1.8、时钟状态引脚(Time_flag)	12
5、	典型应用电路	
6、	机械尺寸	13
7、	电气特性	13
	7.1 极限参数	13
	7.2 静态特性	14
8、	SNTP模块使用注意事项	15
附	录一 串口数据格式	15

1、简介

产品简介

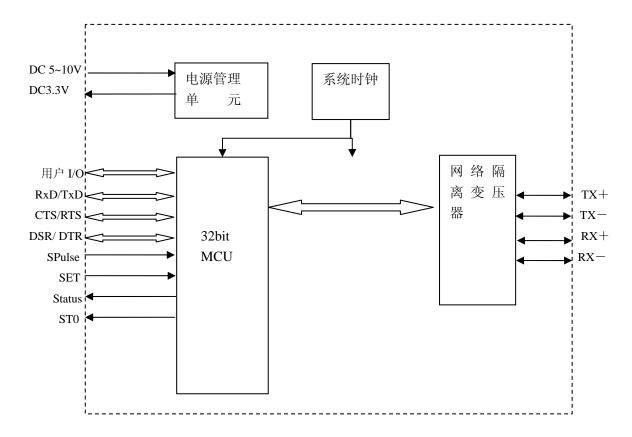
SNTP协议(简单网络时间协议 RFC1769)是向网络中的设备提供时间信息的协议,通常使用在局域网中。通过SNTP协议,网络上的设备可以获得非常准确的时间。

目前很多时间服务器是基于串口的,为了适应网络化的要求,Link-com开发了SNTP模块, SNTP模块从串口接收精确的时间信息,然后向网络的设备提供精确的时间。

通常的,SNTP模块可以直接与GPS模块连接,直接解析GPS输出的时间信息。另外, Link-com可以根据客户的串口协议进行个性化的修改。

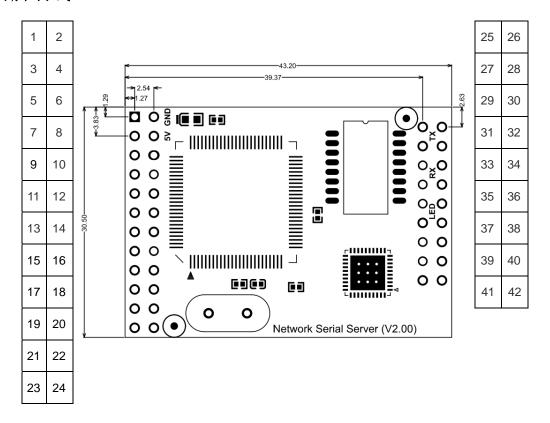
产品特点

- 32 位 CPU:
- 10/100M Base-TX 以太网接口(使用排针方式引出);
- 内置网络隔离变压器;
- 支持 AUTO-MDIX 技术:
- 串口 TTL 电平方式,波特率 300~230400bps; (默认: 4800bps)
- 串口具有 None、Even、Odd、Mark、Space 校验方式; (默认: None)
- 串口数据位 5、6、7、8 可设定; (默认: 8)
- 串口停止位 1、2 位可设定; (默认: 1)
- 每个串口均提供 CTS、RTS、DTR、DSR 硬件流控信号输入输出;
- 最多达 26 个用户 I/O 口,用户可以编程:
- 提供秒脉冲输入;
- 可自行设置串口时钟信息的时区;
- 内置 WEB 服务器,支持用户网页,用户可以通过浏览器配置设备;
- 具有硬件参数保护功能, 防止参数被恶意修改:
- 支持固件网络升级,可以远程升级设备程序;
- 修改参数和固件升级具有密码保护;
- 可使用配置工具 DSManager Utility for Windows98/me/NT/2000/XP 进行参数配置;
- 输入电压 DC 5~10V;
- 一路 3.3V, 200mA 电源输出。
- 功耗低,最大工作电流 150 mA;
- 工作温度 -40~85°C:
- 1.5KV 电磁隔离;


应用领域

● 门禁/保安控制系统;

- 医疗/保健自动化系统;
- 银行自动化系统;
- 证券交易系统;
- 工业自动化系统;
- 大楼自动控制系统;
- 销售点系统(POS);
- 信息家电。


2、系统结构

SNTP 系统结构

3、管脚定义

管脚引线

管脚描述

管脚	功能	类型	描述	备注
1,2	GND	Р	电源地线	
3, 4	DC+5V	Р	电源输入。	
5	SPulse	I	秒脉冲输入,接外部设备提供的秒脉冲。(如果 外部设备无法提供秒脉冲,模块的时间是不准 确的。)	
6	10.0	I/0	用户 I0 口。[注 1]	
7	SET	I	参数设置管脚,如果 SET 管脚出现一个大于 100ms 的低电平脉冲,模块调入默认参数运行。	

			此时 Status 管脚输出 500Hz 方波。再出现一个	
			大于 100ms 的低电平脉冲时,调入用户设置的	
			参数运行。此时 Status 输出 1Hz 方波。	
8	I0. 1	I/0	用户 I0 口。[注 1]	
9	Time_flag	0	时钟有效,输出低电平表示时钟有效。	
10	10. 2	I/0	用户 I0 口,可以定义为输入或输出。可以输出	
			或吸收 4mA 电流。	
11	RTS	0	串口请求数据发送输出[注 2]	
12	10. 3	I/0	用户 I0 口。[注 1]	
13	CTS	0	串口清除数据发送[注 2]	
14	10. 4	I/0	用户 I0 口。[注 1]	
15	RxD	Ι	串口的数据输入[注 2]	
16	10. 5	I/0	用户 I0 口。[注 1]	
17	TxD	0	串口数据发送[注 2]	
18	SPulse_flag	0	秒脉冲状态指示,每收到秒脉冲,电平跳变。	
19	DSR (IO. 13)	Ι	串口数据设备准备就绪	
		串口数据指示,每收到正确的串口数据,电平		
20 Pack_flag		0	跳变。	
21	DTR (IO. 14)	0	串口1数据终端准备就绪	
22	Sync_flag	0	输出低电平,表示时钟为同步。	
23	备用			
24	备用			
25	DC+3. 3V	Р	3. 3V 电源输出	
26	TX-	N	以太网的数据接收脚,一般接到 RJ45 的第 2 脚。	
27	GND	Р	模块电源地线	
28	TX+	N	以太网的数据接收脚,一般接到 RJ45 的第 1 脚。	
29	10. 7	I/0	用户 I0 口。[注 1]	
30	RX-	N	以太网的数据发送脚,一般接到 RJ45 的第 6 脚。	
31	10.8	I/0	用户 I0 口。[注 1]	

32	RX+	N	以太网的数据发送脚,一般接到 RJ45 的第 3 脚。	
33	10. 9	I/0	用户 10 口。[注 1]	
34	ER	0	网络数据指示引脚,有数据时为高电平。内部 有限流电阻,可以直接接 LED。	
35	10. 10	I/0	用户 I0 口。[注 1]	
36	EG		网络连接指示灯,如果为高电平,表示网络连	
30	EG		接正常。内部有限流电阻,可以直接接 LED。	
37	10. 11	I/0	用户 I0 口。[注 1]	
38	CMGND	N	底盘地线	
39	10. 12	I/0	用户 10 口。[注 1]	
40	VDD	Р		
41	GND	Р		
42	NC			

类型说明

P =电源管脚;

I = 输入管脚;

0 = 输出管脚;

N = 以太网接口;

I/0 = 输入输出管脚,用户可自定义;

[注 1] 管脚的输入输出属性用户可自定义,管脚可以输出或吸收 4mA 电流。允许 5V 电压输入。

[注 2] 管脚电平为 TTL 电平,如需要与 RS232 或 RS485 设备通讯,需要接上相应的转换电路。

4、功能描述

4.1、硬件接口描述

4.1.1、网络接口

网络接口包括 RX+、RX-、TX+、TX-四根信号线。支持标准的 10/100M 自适应以太网口。由于模块已经内置的网络隔离变压器,因此用户仅需要接一个 RJ45 接口,即可连接到以太网网络。SNTP 模块网络接口支持 AUTO-MDIX,可以自动识别直连线和交叉线。

与 RJ45 接口接线可参考下表:

RJ45 接线

符号	说明	RJ45 脚
TX+	以太网数据发送正端	1
TX-	以太网数据发送负端	2
RX+	以太网数据接收正端	3
RX-	以太网数据接收负端	6

网络接口包括两个网络状态输出引脚 ER 和 EG,描述如下:

符号	状态	说明		
EG	低电平	网线连接断开		
	高电平	网线连接良好		
ER	低电平	没有接收网络数据		
	高电平	接收到网络数据		

4.1.2、串行接口

串行接口包括 RxD、TxD、RTS、CTS、DTR、DSR 数据和信号引脚。信号为 3.3 伏电平信号,可以直接连接到用户的嵌入式处理器。或是连接到相应的电平转换电路,转成标准的 RS232/RS485/RS422 电平信号。

串口信号定义:

符号	说明
RxD	模块串口数据输入端。
TxD	模块串口数据发送端。

RST	模块串口数据请求发送引脚。在模块设置为允许流控,当模块串
	口需要发送数据时,该引脚电平置低。无数据发送时,引脚置高
	电平。无流控方式,RST 电平无意义。
	模块串口数据清除发送引脚。在模块设置为允许流控,当 CTS 引
CTS	脚电平为低时,模块被允许发送数据。如果 CTS 为高电平,模块
	不允许发送数据。在无流控方式下,CTS 无意义。
DTR	未用
DSR	未用

4.1.3、默认参数

SNTP 模块有一个 SET 管脚,当这个管脚上出现一个低电平脉冲时,模块调入出厂默认参数运行,下一个低电平脉冲,模块将调入用户设置的模块运行。一般情况下,用户需要在这个管脚上接一个 10K 电阻上拉,以提高抗干扰能力,防止参数意外的变化。

这个功能在用户忘记模块的 IP 地址或是密码的时候特别有用。如果用户忘记模块的密码(如果密码不为空),将无法配置模块的参数,也不能进行模块固件的升级。通过恢复模块的默认参数,使用户可以重新访问模块,配置模块的参数,或进行固件升级。

4.1.4、秒脉冲输入引脚(SPulse)

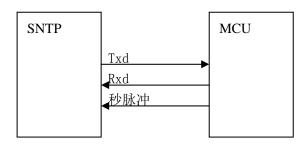
SNTP 模块正常工作需要一个秒脉冲, 秒脉冲是一个 10~500ms 的高电平脉冲, 脉冲的上升沿对应一秒的开始。秒脉冲之后, 外部设备应向 SNTP 模块提供当前秒的数据帧。(数据帧的格式请参考附录 1)

4.1.5、秒脉冲状态引脚(SPulse flag)

当模块接收到秒脉冲时,改变此引脚的电平。

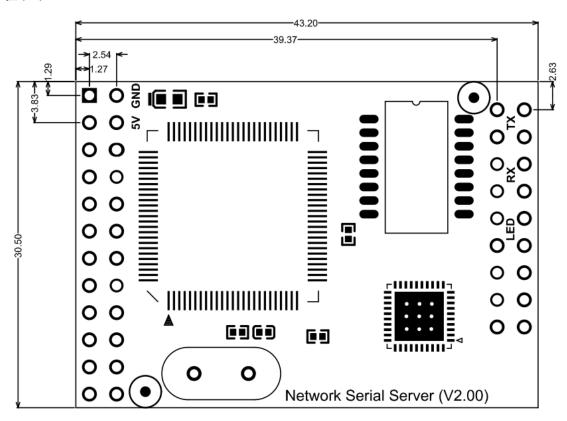
4.1.6、时间数据状态引脚(Pack_flag)

当模块从串口接收到正确的时间数据帧时,改变此引脚的电平。


4.1.7、同步状态引脚(Sync_flag)

正常时输出低电平。当模块的长时间(60秒)没有收到秒脉冲后,进入时钟未同步状态,引脚输出高电平。此时,如果客户端请求时间,将回应一个带未同步警告标志的时钟信息。

4.1.8、时钟状态引脚(Time_flag)


时钟有效时输出低电平。如果模块长时间(60s)没有收到时间数据帧,进入时钟失效状态,此时时钟状态引脚输出高电平。此时,如果客户端请求时间信息,将不回应任何时钟信息。

5、典型应用电路

6、机械尺寸

单位(mm)

7、电气特性

7.1 极限参数

工作温度	0~70℃
保存温度	-40~125℃
输入电压(V)	18V
10 口电压	-0.5∼5.5V
I0 电流	±10mA
3. 3V 电源输出电流	500mA

7.2 静态特性

符号	描述	条件	最小	典型	最大	单位
V _{DD}	电源电压		4.8	5. 0	10	V
$I_{ extsf{DD}}$	工作电流	静态,无网络数据传输	50	55	60	mA
V_{DD33}	3.3 电源电压输出	I _{330UT} < 500mA, 4.8 <v<sub>DD<10V</v<sub>	3. 23		3. 36	V
I _{330UT}	3.3 电源电流输出				200	mA
$I_{\scriptscriptstyle \mathrm{IL}}$	低电平输入电流	V _r =0; 无上拉			3	μД
$I_{ ext{IH}}$	高电平输入电流	V _I =3.3V; 无下拉			3	μД
V_{I}	输入电压		0		5. 5	V
Vo	输出电压		0		3. 3	V
V_{IH}	高电平输入电压		2. 0			V
$V_{\rm IL}$	低电平输入电压				0.8	V
V _{OH}	高电平输出电压	$I_{OH} = -4mA$	2. 9			V
V _{OL}	低电平输出电压	$I_{OL} = -4mA$			0.4	V
Іон	高电平输出电流	$V_{OH} = 2.9V$	-4			mA
IoL	低电平输出电流	$V_{OL} = 0.4V$	4			mA
Ions	高电平短路电流	V _{OH} = OV			-45	mA
Iols	低电平短路电流	V _{oL} =3. 3V			50	mA

8、SNTP 模块使用注意事项

- 串口时间数据帧应连续发送给模块,中间间隔不应大于 5ms。
- 串口时间数据默认为格林威治时间,如果串口提供其他时区时间,需修改相应参数。
- 串口时间数据帧为附录一格式的数据帧,其他格式数据帧将被忽略。
- •如果缺少秒脉冲,60s 内正常提供对时服务,60s 后仅提供有未同步警告标识的时间数据帧。如果缺少串口时间数据帧,60s 内正常提供对时服务,60s 后停止提供对时服务。

附录一 串口数据格式

外部控制器应定时向 SNTP 模块发送时间数据,并提供准确的秒脉冲。

数据帧格式如下:

\$GPRMC,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,<12>*hh <cr><lf></lf></cr>	
<1>	UTC 时间,hhmmss(时分秒)格式
<2>	定位状态,A=有效定位,V=无效定位
<3>	纬度 ddmm.mmmm (度分)格式(前面的 0 也将被传输)
<4>	纬度半球N(北半球)或S(南半球)
<5>	经度dddmm.mmmm(度分)格式(前面的0 也将被传输)
<6>	经度半球E(东经)或W(西经)
<7>	地面速率(000.0~999.9 节,前面的0 也将被传输)
<8>	地面航向(000.0~359.9 度,以真北为参考基准,前面的0 也将被传输)
<9>	UTC 日期,ddmmyy(日月年)格式
<10>	磁偏角(000.0~180.0 度,前面的0 也将被传输)
<11>	磁偏角方向,E(东)或W(西)
<12>	模式指示(仅 NMEA0183 3.00 版本输出,A=自主定位,D=差分,E=估算,N=数
	据无效)

hh 代表了"\$"和"*"之间所有字符的按位异或值(不包括这两个字符)。